Indian Statistical Institute, Bangalore

B. Math (Hons.) Third Year Second Semester - Complex Analysis

Back-paper Exam
Date: 03rd June 2025
Maximum marks: 100
Duration: 3 hours

Each question carries 10 marks

- 1. If $f, g \in H(\Omega)$, prove that $f \pm g$ and $fg \in H(\Omega)$.
- 2. (a) Determine all $f \in H(\mathbb{C})$ such that |f(z)| = |z| for all $z \in \mathbb{C}$ (Marks: 5).
 - (b) Determine all entier functions f such that $f(z) + \overline{f(z)}$ is constant.
- 3. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ have radius of convergence R. Then prove that f is holomorphic and $f'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$ on |z| < R.
- 4. Prove that $f \in H(\Omega)$ is representable by a power series on Ω .
- 5. If $f \in H(\Omega)$ and $\gamma \subset \Omega$ is the boundary of a circle in Ω , find all $a \in \Omega \setminus \gamma^*$ so that $f^{(n)}(a) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} dz$. Justify your answer.
- 6. State and prove Schwarz lemma.
- 7. If f has a simple pole at z = 0, find res(fg; 0) g(0)res(f; 0) for any analytic function g in the unit disc. Jusify your answer.
- 8. Find the number of zeros of $p(z) = 6z^6 3z^3 + 2z$ and $q(z) = 2z^8 6z^7 + z 3$ inside the unit circle. Justify your answer.
- 9. Evaluate $\int_0^\pi \frac{d\theta}{\cos \theta + \sqrt{2}}$ using residue theorem.
- 10. If $f \in H(\Omega)$, find residues of $\frac{f'}{f}$ at its poles in Ω . Justify your answer.